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Weak Noise Expansions through Functional 
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We use path integral methods to obtain expansions for the correlation functions 
of the non-Markovian stochastic processes generated by stochastic differential 
equations with colored noise. 
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1. INTRODUCTION 

The study of systems in the presence of colored noise has been recently 
reviewed by Sancho and San Miguel (1) and van Kampen. (2) In these papers 
attention has been focused mainly on equations for the probability 
densities and on the stationary probability of the non-Markovian 
stochastic process. Here we shall study correlation functions for such pro- 
cesses and give perturbation expansions for them in formal power series in 
a parameter measuring the strength of the colored noise. We shall use the 
technique of functional integration to obtain our results through suitable 
generalizations of the method developed in ref. 3. Path integrals have been 
used for these processes by Wio et aL (4-6) in the study of the conditional 
probability density and of the stationary distribution and similar results 
have also been obtained by McKane eta/ .  (7'8) Weak noise expansions for 
the stationary distribution using WKB-type techniques have been reported 
in refs. 9 and 10. 

In Section 2 we present the formalism for stochastic differential 
equations of one variable. Explicit expressions are given for the generating 
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functional of correlation functions both for the time-dependent regime and 
for the stationary state. In Section 3 we apply the formalism to an explicit 
example. In Appendix A we derive once again the basic formula of 
Section 2 from the two-variable Markov process associated to the original 
system when the colored noise is the Ornstein-Uhlenbeck process. 
Although in Section 2 we only treat the one-variable case, the generaliza- 
tion to several variables is possible following the same method. 

2. EXPANSIONS OF CORRELATION FUNCTIONS 

We consider the equation 

= A(x) + ~ a(x) ~(t) (1) 

where ~(t) is a Gaussian colored noise with mean value zero, ( ( ( t ) ) = 0 ,  
and correlation 

( ~(t) ~(t') } = A(t, t')= d(t', t) (2) 

Equation (1) defines a non-Markovian stochastic process when 
A(t, t ' ) r  In order to construct a perturbation expansion for the 
correlation functions, we start by giving a functional integral representation 
for the functional F[xr of the solution x~(t; Uo, to) of (1) for a given 
realization of the noise with initial condition xr Uo. We can write 
formally 

FEx~()] =INQ I~ 6(Q(t)-A(Q(t))-x/-~a(Q(t))r 
t ~ [ to ,  T ]  

x FEQ] JEQ]" 6(Q(to) - Uo) (3) 

where ~ Q = I I ,  dQ(t) and J[Q] is a Jacobian. We discretize time as 
O=to+je, tU+l = T, g=(T- to) / (N+ 1), and if f(t)  is any function of 
time, we put fj = f (0 ) ,  Afj = f j - f j _  1. Then the discretized version version 
of (3) in the prepoint discretization which discretizes Q(t) at the beginning 
of each interval [0-1,  tj] is 

F(x~ ..... X~N + 1) 
N + I  N + I  

= ~  17 dQi 1~ b(Gj)'F(Q1 ..... QN+a).J(Qx,...,QN+I) (4a) 
OQ O = u O  i = l  j = l  

Gj= AQj-  eA(Qj 1)- sN/-~ ~7(Qi_ l)~j (4b) 
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This expression defines the functional integral (3) as the limit of (4a) when 
N ~  oo (e ~ 0). The Jacobian in (4a) is J =  Idet Bkt[, 

~Gk (6k, t _ 6 , . k _ l ) _ e 6 , , k _ l ( A , ( Q k _ i ) + , , f ~ r , ( Q k _ ~ ) ~ k  ) (5) Bk t -  O Q t -  

where the prime denotes derivative with respect to the argument. From (5) 
we see that Bkt = 0 if k > 1; then det Bkz = lrIt BH = 1 and J =  1. It should be 
pointed out that we can discretize in an arbitrary way; for instance, in the 
discretization 7(~) one will have instead of (4b) 

G; = AQj - eA(Qj_ i + ~AQ~) - ~.~/'~ a(Qy_ ~ + c~AQy)~ 

and the Jacobian J r  1, but the final result will be independent of c~. This 
happens due to the following mechanism: the value of the functional 
integral depends on the discretization and this dependence cancels the 
effect of the Jacobian, as has been discussed at length in refs. 3, 11, and 12. 
Using 

dioj 
= f exp(iPyQj) 

we obtain 

F(x~ ..... x ~  + l ) 

= dQi 1-I ~ - e x p  - A ( Q y _ l ) - x / - ~ r ( Q y _ l ) ~ y  
Qo = uo i =  l j = l j = i  

• ..... Ou+~) (6) 

The discretized version of the average of a functional G[~( . ) ]  over the 
realizations #(t) of the colored noise is 

i =  1 ( 2 7 t )  1/= ... .  ' 

P(~, ~N+,)__ [de t ( J_ , ) ] , /2  exp ( 1 ~ )  ..... -- 2y, k ~j Ay~l~k (7b) 

where 4 -1 is the inverse matrix of Ajk= < ~ j ( k ) = A ( t j ,  tk), since, using 
(7), one easily checks that < 1 > = 1 ,  ( ~ t ) = 0 ,  and <~j~k>=Ajk. If 
K~y= K(ti,  tj), where K(t, t') is the inverse kernel of d(t, t') in the sense 

dt" K(t, t") A(t", t') = 6(t -- t'), then one has the matrix relation e2K= A -1 
and the argument of the exponential in (7b) is ~ dt' dt" ~(t') K(t', t") ~(t"). 
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Using (7), we can average (6) over the realization ~(t), since the integral 
is a Gaussian. We obtain 

(F(x~,..., x~+ ~)> 

dPJ exp ie Pj - A(Qj_ I) dOi I1 ~ 
~ f  i=l j=l j=l 

N+I 1 rle2 ~ Pja(Oj ,)3jka(Qk-~)ek .F(Q~,...,QN+~) (8) 
2 i,k=~ 

We write this as a phase space functional intergral in the ~(0) (prepoint) 
discretization 

2 ,o ctc P(c) ~(Q(C)) ~(t', c') ~(Q(t")) P(c') 

x F[Q] 6(Q(to) - Uo) (9) 

and this functional integral is defined as the limit when N-~ ~ of (8). This 
is our basic formula and in Appendix A we give another derivation which 
makes the connection with a two-dimensional Markov process when 

A(t', t " ) =  c e_~Lt,_t,, I 

From (9) we see that the correlation function G m ( ' C l , . . . , ' C m )  = 

(xr162 will be given by 

Gm(%,. . . , rm)=fi  1 6 2 " "* i=176--~ [J'J ] a-a . . . . .  -o (10) 

f ~ Q  ~ P e x p  ~I i ~,~ Tdt [ P ( O -  A(Q))+ j ( t )Q( t )+ j*( t )P(t)]  2 [ s  j * ]  
o 

";,2 } - - -  dt' dt" P(t') ~(Q(t')) A(t', t") ~(Q(t")) P(t") 
2 

x 6(Q(to) - Uo) (11) 

where T is any time bigger than all the zj (we can take T =  +az). From 
now on we omit [as in (11)] the discretization 7(0), since we shall work 
only in the prepoint discretization. 
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The perturbation expansion is constructed by making in (11) the 
change of variables P( t ) -+ P( t )/q, J(t)=x/-~j(t) ,  j*( t )=v/ -~J*( t ) ,  and 
Z[J ,  J* ]  = Z [ J ,  J*] .  One has 

{if  
Z[J '  J* ] = f ~ Q  ~"P  exp -~ o dt [P(Q" - A(Q)) + x/~ JQ +~-q  J*P] 

1 f v dt' dr" P(t) a(Q(t')) A(t', t") a(Q(/')) P(t")} 
2tl o 

• 6(Q(to) - -  Uo) (12) 

where 

N + I  N + I  

~ Q  ~ P  = I-I dQi I-[ dPj 
~=, j=, 27rrl 

in the discrete. We make now in (12) the change of variables P ( t )=  
xf~p(t) ,  Q(t) = u(t) + ~ q(t), where u(t; Uo, to), U(to) = Uo, is the solution 
x-= u(t) of the deterministic equation [see (1)] 

:c(t) = A(x(t)) (13) 

The terms O(t/- ' )  in the argument of the exponential in (12) vanish due 
to the choice of u(t) as well as part of the terms O(t/ ,/2). We obtain 
(Z[O, O] = 2 [ 0 ,  O] = 1) 

Z[J,  J* ]  = exp dt J(t) u(t) . Z[J ,  J* ]  
o 

(14a) 

lf[ 
--~ dt 'dt"p(t)  A(t, t ')p(t ')  

o 

- i  ~ tt~"-')/2 f r ,>2 n v. to dt p(t) A~")(u(t)) q(t)" 

~+m> , n! rn------T o dt dt 'p(t)  q(t)~ a(")(u(t)) 

x A(/, t') a{m)(u(t')) p(t') q(t')m} - 6(q(to)) (14b) 
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where 

in the discrete, 

~ 1 N+= I 
~q  ~ p =  dq dpj 

i = 1  i j= 2re 

2(t, t') = a(u(t)) A(t, t') a(u(t')) = A(t', t) 

d"A dna 
A(")(q) = dq n' a(")(q) = dq" 

Using the generalization of f (q )e  Jq= f(6/6J)e Jq, we have 

Z[J ,  J* ]  = K  6J*' i 

Z o [ J , J * ] =  ~ q ~ p e x p  i [ p ( O - A ' ( u ( t ) ) q ) + J ( t ) q ( t ) + J * ( t ) p ( t ) ]  
0 

1 T dt" } - 2 f  dt' p(t) A(t', t ' )p( t")  .6(q(to)) (15b) 
tO 

= dt A(n)(u(t)) p(t) q(t) n 
,,>~2 n! t 

1 11(n+m)/2 fT  
- 2  ~ n!m!  dtdt'  p(t) q(t)~a(~)(u(t)) 

n+m>~l tO 

x A(t, t') a(m)(u(t')) p(t') q(t') r~] (15c) 

The correlation functions are now [see (10)] 

= ZEJ, J * l  i16) 
1=1 i 6J(~l) 

and since Zo[Y, J* ]  is independent of q [all the q dependence is explicitly 
shown in (14) and (15)], we can see from (14) and (15) that they can be 
calculated as formal power series in q. We see in (15b) that Zo is given by 
a Gaussian functional integral which can be calculated (see Appendix B, 
ZoEO, o]  = 1) 

Zo[J, J* ]  = exp - i  dt dt' J(t) S(t, t') J*(t') 
o 

- � 8 9  d td t ' J ( t )D( t ,  t ')J(t ')  (17a) 
o t 0 
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f 
t 

S(t, t') = O( t -  t') exp dr A'(u(z)) (17b) 
t '  

T 

D(t, t') = ~ dtl dtz S(t, tl) 3( t l ,  t2) S(t', t2) = D(t', t) (17c) 
~ t  0 

Here O(t) is the step function, O(t)= 1, t > 0 ,  and O(t)=0, t < 0 .  In the 
calculation of Z[J ,  J * ]  by (15a), one finds terms of the form 

6 6 
cSJ*(t) ~SJ(t) Zo[J, J * ]  = -iO(O) (18) 

which are undefined. But the prepoint discretization 7(0) tells us that they 
must be interpreted as 

6 6 
~m+o M*( t  + e) M(t)  Zo[J, J* ] = - i O ( - e )  = 0 (19) 

since p(t)q(t)  is discretized as Pjqi-1. As an example, we calculate the 
mean value GI(z)= ( x ( z ) )  using (14)-(16) in the case of a (q )=  1. We 
obtain 

Gl(r)=xflfi'qt 6J(r)~Z ~=s*=0  

= u(z) + dt A(2)(u(t)) S(r, t) D(t, t) + O(tl 2) (20) 
o 

The formulas obtained up to now give the fluctuations around the deter- 
ministic trajectory x=u( t ;  Uo, to). We consider now the stationary state 
which is obtained taking the limit t o ~ - o r  in (14)-(17). We have then to 
examine the attractors of the dynamical system 2 = A(x(t))  [-see (13)]. Let 
# be an attractor, i.e., A(#)=  0, A ' (# )<  0, and B(#) its basin of the attrac- 
tion, Le., if Uo is in B(#), one has that u(t; u0, to)= t~(T; Uo), T = t - t o ,  
tends to # when z ~ ~ .  The generating functional s t a t  Z o [J, J * ]  correspond- 
ing to this attractor is obtained from (17), 

ES z~ ta t [ j , J*]=exp  - i  d td t 'J ( t )  SSt(t , t ' )J*(t  ') 

S 1 - �89 dt dt' J(t) DSt(t, t') J(t') (21a) 
- - 0 9  

SSt( t, t') = O( t - t') exp[A'(~t)(t - t ')] (21b) 

D~t(t, t') = cr(#) 2 dtl dtz S~t(t, tl) 3(t l ,  t2) S~t(t ', t2) (21c) 
- - o o  

822/71/3-4-11 
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We shall specify now the colored noise ~ as an Ornstein-Uhlenbeck 
process with correlation (c > 0, 7 > 0) 

(~ ( t )~ ( t ' ) )=A( t - t ' )  c_ e 'lit ,I 
z7 

(22) 

In this case O st has the value [b = - A ' ( # ) <  0] 

ca(lz) 2 ~ 1 e--bit cl 1 D~t(t 't ')- 2-----7 [ _ ~  +~Z._~_Tz(e ~,lt-t'l - e -b l t - " l ) ]  (23) 

The white noise limit is here r  2, ? ~ c~, which gives A( t )~  6(t) and 
(23) tends to the usual result [a(l~)2/2b-]exp(-blt--t'[). There is no 
singularity in (23) at b 2 -- ~2. We remark that the expansion for the station- 
ary correlation functions is local in the sense that one will obtain a system 
of correlation functions for each attractor of the deterministic dynamical 
system 2 = A(x). If there is only attractor, the result is global. In the case 
of coexistence of attractors the fluctuations that we determine around one 
of them have a meaning if the escape time from that local attractor is much 
bigger than the times in which we are interested. Since the dominant 
behavior of the escape time is of the form exp(r/t/) with r a positive 
constant, the expansion is asymptotically valid for t / ~  0. 

An alternative way of doing the calculations is to define a new 
stochastic process q(t) by making in (1) the change of variables x ( t )=  
u(t) + ~ q(t), which gives [a~~ - a(u(t))] 

r/~"- 1)/2 A(,)(u(t) ) q(t) n 
0(t)= n! 

n~>l 

a(m(u(t)) [~4/-~ q(t)]" ~(t) (24) 
n~>0 

The generating functional of correlation f u n c t i o n s  Gm('~l,...,l"m) = 
(q(r l ) ' -"q(Zm))  of the process q(t) is 

Z[J , J* - l :  f ~q ~p exp {i it Tdt 

+ J(t) q(t) + J*(t) p(t)] 

r dt dr' } f p(t) a(u(t)) A(t, t') o(u(t')) p(t') 1 --2 
to 

• K[p, q]. 6(q(to)) (25) 
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where Kip, q] is the functional given by (15c). One has 

Gm('~ 1 ,---,'~m)= f i  ] j~-(v,)Z[J,J*Js= 
1=1 i 6 :*=0 

Comparing (15a) with (25), we see that Z[J,  J* ]  = Z [ J ,  J*].  

(26) 

3. A P P L I C A T I O N S  OF T H E  F O R M A L I S M  

Correlation functions and cumulants of the original process x(t) are 
related to the corresponding quantities of q(t) through the transformation 
x(t) = u(t)+ x//-~ q(t) and consequently we can work with q(t). Using (15) 
and (26), we obtain the correlation functions of q(t): 

Cm(~'l,'",~m) = (q(r~)"" q('fm)) 

/=1 - ~  g Zo[J~J gr ] (27) 

Using the generalization of the formula 

F ( ! ~ ) Z ( J )  j = o = Z ( ~ q ) F ( q ) q = O  

valid for any functions F(.) and Z(. ), we obtain from formula (27) the 
basic equation 

~m(rl,..., 75m)=ZoI~ (~ l ~p] p=q=O 6q' 1 q(T1 ) '  q(%') Kip, q] (28) 

Here Zo is independent of q and K[p, q] has an expansion in powers of 
x/q, but inspection of (28) shows that for m even one has only powers 
x/~2" = q" and for m odd only powers ~/-~2n+ 1= x//~qn. Each term in (28) 
is a multiple integral with an integrand which is the product of given 
functions of time with quantities of the form 

, Zo (p(zl)p(~2)-- �9 q(zl) q(~) . . . .  { P(Zl)... q(z~)..-} 
fiq' i =q=O 

(29) 

where the notation {--.) is defined by (29). Putting zl(r)=p(v),  
z2(v) = q(z), we define the contractions z ~ v ( t ' ) - =  {z,(t) z~(t')}, which 
have tile values 
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Z~r-~Zv(tt)~ZoI~(~l~plZ#(t)Zv(tt)p=(~q' i q = 0  ~z~tv(t't') (30a) 

zlll(t, t') = 0, At2(t, t ')=iS(t',  t) 
(30b) 

A2,(t, t ')= iS(t, t'), A22(t, t ')= D(t, t') 

Due to the form of Zo[J, J* ] ,  which is a exponential of a quadratic form 
in (J, J*), one can easily see that the quantities { P ( ~ 1 ) "  q(z])'" '} in (29) 
have the values [we put z j=z( r j ) ]  {zlz2 "-z2n+l} = 0  and 

{Z1Z2""" Z2n } = Z1Z 2 Z 3 Z 4 " ' ' Z 2 n _  1Z2n 71- (all possible pairs) (31) 

which is a sum over all possible contractions of which there are ( 2 n -  1 )!! = 
( 2 n - 1 ) ( 2 n - 3 ) - . . 3 . 1  (this formula is called the Wick theorem; see, for 
example, ref. 14) When n = 2 one has the 3!! = 3 terms 

{Z1Z2Z3Z4} = Z1Z 2 Z3Z4 ~- Z1Z 3 Z2Z 4 ~- Z1Z 4 Z2Z 3 

Each term in (31) has a graphical representation. We put 

(32) 

Z l ~ z ( t '  ) = p~q(t ')  . . . .  iS(t, t') 
t t ~ 

z 2 ~ 2 ( t ' )  = q ~ ( t ' )  . . . .  D(t, t') 

For example, in the sum over contractions of {q(t ')q(t")p(z)q(z) 3} we 
have the term 

I 1 
q(t') q(t") i~(z) q(z) q ~ q ( z )  = iS(t', ~) D(t", ~) D(z, ~) (33) 

which has the graph in Fig. 1. 
The functional Z[J ,  0] generates the correlations 

~m(,.s ..... "~m) = f i  l__ ~_.__.~_. Z[-J, 0]  J=O 
l= 1 i 6J(zt) 

and W[J] = In Z [ J ,  0] the cumulants C,,(~I,.--,Vm) --- ((q(vl)"'" q(Zm))) by 

f l  l 6 W[J] s=o Cm(zl ..... rm) = (34) 
t= 1 i 6J(zt) 

It is simple to see that C,,(zl ..... Vm) can be obtained from (27) keeping only 
the connected graphs (these are the graphs which are not formed of two or 
more separated parts) in the right-hand side. Using now these techniques, 
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�9 | 

t'  "[" t" 

Fig. 1. Graph contributing to the correlation function. 

we shall give explicit expressions for the two-point cumulant C2(t, t ' )= 
((q(t') q(t"))) corresponding to (1) when o-(x) = 1. In this case we have 

with 

K[p,  q] =exp x ~  ft2 dt H1(t) 

1 
H , ( t ) =  ~ q"/2H(i")(t), H(I "~ - - A ( " + 2 ) ( u ( t ) ) p q  "+2 (35) 

./>o i (n+2)!  

Putting C2(t' , t") = Ro(t', t") + qRl(t', t") + O(q2), one has Ro(t', t") = 
D(t', t") and 

R1(t', t") = R~l)(t ', t") + R]2)(t ', t") (36a) 

T 

R~a)(t ', t")= f dz {q(t') q(t") H(1)(v)} (36b) 
~ t  0 

R~2)(t ', t") = �89 dzl dr2 {q(t') q(t") H~(~ H/(~ (36c) 
0 

Using the Wick theorem [formula (31)], we obtain 

R~l)(t ', t") = �89 dz A(3)(u(z)) S(t', r) D(t", 3) D(z, ~) + (t' ~--~ t") (37) 
o 

which corresponds to the graph in Fig. 1 and where (t'~---, t") means we 
have to add the previous term interchanging t' and t" and 
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R]2)(t ', t " )=  �89 ~'' dzl f,i I dr2 A(2)(u(T1))A<2)(u(r2)) 

x S(t', Zl) S(zl, %) D(T1, t") D(r2, %) 

g' ;t ~1 + f dT:l dT2A(2)(u(,1))A(2)(u(T2)) 
to o 

X S(t', T1) S(T1,272) D('c1, 72) D(t", T2) 

+lftto'd'Clftto"d, r2A(2)(bl(T1))A(2'(u(-c2, ) 

x S(t', T1) S(t", *2) D(r l ,  z2) 2 + (t' ~--~ t") (38) 

We specialize now to A ( x ) = 2 x - x  3, where A ( 1 ) = 2 - 3 x  2, 
A(2)= -6x ,  A (3)= - 6 ,  A(") =0 ,  n>~4, and 

2b/2 ; 1/2 
u(t) = +_ u~ + (2 - Uo 2) e x p [ -  2,~(t - to)]J (39) 

where the plus sign corresponds to u o > 0 and the minus sign to Uo < 0. For 
2 < 0 and for any initial condition u(r = t - to) ~ 0, , ~ ~ .  For 2 > 0 one 
has u(,)  ~ ~ for Uo > 0 and u(r) ~ -V/-I  for Uo < 0 (we have bistability). 
Replacing u(t) in (36)-(38), we obtain C2(t', t"). For the stationary state 
we have to distinguish according to the sign of 2. 

For  2 < 0  one has b = - A ~  [see (21)-(23)], A(2)(0)=0, 
A(3)(0) = - 6 ,  and 

SSt(t, t') = O( t - t')e ~('- c) (40a) 

DSt(t,t ,)=_~7[2(l_2)e).,t_c, +I-T-~--? 2 1  (e ~ l ' - t ' l - eZl t -c l ) ]  (40b) 

Replacing in (37)-(38), one has R]2)= 0 and 

R~'(t', t") 

(2  c ))  2 
= - 3  2__72 ~(2 

I 2 e ' 'c c ' 1 3 2 2 7 - 7 3  ~ 2 + Y ? t " l e ~ ' C - c " ]  x + 2 - - ~ - - ~  e;~l"- '"I + - - ~  -- [ t ' -  (41) 

For 2 > 0  we take Uo>0; then u(z)-~. ,f2,  A~ ) = - 2 1 ,  
A(2)(,J2) = - 6 . J i ,  A'3)( .JI)  = -6 ,  and 
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SSt(t, t') = O(t - t ')e -2~'(t- c) 

c [ 1 e__221t_Cl 
D~t(t, t') = ~ [_22(22- + ?) + - -  

Replacing in (37)-(38), we obtain now 
R~l)(t ', t') 

= - 3  27(42g_72 

X[2 . - - -~e -Y l t ' - t " l  12227--73 e-2;~lt' t " l _ _ _ _  
L22 + 7 823( 22 + 7) 

(42a) 

1 (e yl,-cl _e-2Xl,-,'l)l 
422--72 

(42b) 

22 - 7 
422 

R 2 (r, c') 

( c )2 [2423 + 24227 + 72,2 + 73 e_, lc_ c, , 
=9 27(4 ; -< i  l 

12826 + 48257 - 2762472 -- 2342373 -- 402274 + 5275 + 76 e -  2;.It- c'l 

823(2 + 7)(22 + 7)(42 + 7)7 

822 q- 227 - 372 7 
I t ' -  t"[ e -2;d''-t 'l -1 - -  (e -~1''-'~ - e -4~1''-'"1) 

422 2(42 -- 7) 

1 1 _ _  (e-2.~j t ' -c ' l  e-2,1c-t"l) + ~ e-2~lc-c't 
4(2--7)  

822+427+72  _ , . . . .  ] 8 2 2 - 2 2 7 - 4 ? 2  e-~2;+~)i"-c'lq - ?e 4~, , I (43b) 
(2 + 7)(42 + 7)7 823( 42 + 7) / 

For u 0 < 0  one has u ( r ) ~ - x / 2  and the final result is again (42)-(43). 
We remark that the above expressions are not singular at 72= 22, 72= 422, 
or 72=42  [see also (23)]. 

? [ t ' - t " ] e  2;.I,'-,"1] 

(43a) 

APPENDIX A 

We consider here the colored noise ~(t) with (~(t)  ~(t ' ) )  give by (22), 
which is just the stationary correlation function of the Ornstein-Uhlenbeck 
process defined by the equation ~( t )=  - 7 4 + x / - c f ( t ) ,  where f ( t )  is a 
3-correlated white noise of zero mean, i.e., f ( t )  is a Gaussian process with 
( f ( t ) ) = 0 ,  ( f ( t ) f ( t ' ) ) = 3 ( t - t ' ) .  We put ql( t )=q(t ) ,  q2(t)=~(t),  and 
consider instead of (1) the coupled stochastic differential equations 

qa = A(ql) + ~ ~(ql)q2 (A1) 

02 = --?q2 + xfl-~ f ( t )  (A2) 
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The generating function Z1 [-j, j * ]  of correlation and response functions for 
the process ql(t) is given by (3'13) 

+ p;(O2 + 7q2) + g p~ +Jq~ +J*p~ 

x 6(q~(to) - uo) 6(q2(to) - 3) (A3) 

N + I  N + I  dplddp2, j 
Nq ~P = ~ql Nq2 NPt NP2 = ~I dq~,i dqz, i [I 2~z 27r 

i ~ l  j = l  

in the discrete and we have taken initial conditions ql(to)=Uo and 
qz(to) = ft. We can write (A3) as [we omit y(0)] 

f Z I [ j , j * ] =  ~ q ~ q l e x p i  dt[pl(gl~-A(qx))+jqt+j*p~ ] 
o 

x ~(q~(to) - ,o) .  z~[  - , / - ~  ~p~, o]  (A4) 

Z2[J ,J* ' l=f  ~q2@p2expift~dt[p2(cl2+Yq2)+ 2P~+Jq2+J*P2 j 

• 6(q2(t0) - fi) (A5) 

But Z2 is the generating functional for the Ornstein-Uhlenbeck process 
and can be calculated since it is a Gaussian functional integral. Using the 
boundary conditions 

6Z2 :=:o = 3Z2, 6Z1 ~s(t) ~ )  , :  ~ = 0, z2[o,  03 = 1 

one obtains the result (3'13) 

Z2[ J, J * ] = exp [ ifl f f dt e'{t~ t) J( t ) 

- i f dt'  dt" J ( t )  S( t '  - t") J ( t")  

I f r t")J(t")l (A6) - 2 *o dt' dt" J( t ' )  A( t ' ,  

S(t) = O(t)e -~t (A7) 

c (e_~l,_,,l_ e_~(t+ ,)+2~o ) (A8) 3(t, t ' ) = ~  
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The next step is to do the average of ZI[j,j*] in (A4) over the initial 
condition qz(to)= fl with the stationary probability density of this process 

since we are assuming that the colored noise is in the stationary state. This 
means that the time scale 7-1 defined by the colored noise is smaller than 
the other relevant scales [here the relaxation time ]A'(P)] I o f  q l ] "  We 
have 

f dfl Z2EJ, J* = 0] Pst(fl) 

l r dt"J(t')~Te-~lc-c'tJ(t")) (A9) -=exp ( -  ~ f, o dt' 

Using this result for J(t) = -,/-~ ~r(u(t)) pl(t) in ~ dfl ZI[j ,  j * ]  Pst(fl) = 
2[j, j* l ,  we obtain 

Z[ j ,  j*  ] = f ~q,  ~Pl exp ~i ~rdt ['Pl(ql- A(ql))-k- jq, + J*Pl] 
I_ ~t o 

c 1 ---~ dt' dt" pl(t')a(u(t'))~Te 'lc-c'l~r(u(t")) pl(t") 
0 

x fi(ql(to) - Uo) (A10) 

which was the starting point (11) of our method. 

A P P E N D I X  B 

We shall calculate here the Gaussian functional integral (15b). Using 
the integration by parts lemma 

6 B 6 B 
f eq~p~---~ [p,q]=f eq~p6-)-- ~ [ p , q ] = O  

for any functional B[p, q] we obtain from (15b) for B[p, q] equal to the 
integrand the equations 

f ~ q ~ p  {-D(t)-A'(u(t))+J(t)} B[p, q] =0 (B1) 

These equations give two differential equations 
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- = - d t '  3 ( t ,  r )  ~J*( t~ )  - - A ' ( u ( t ) )  i 6J( t )  to 

{~ }l~Zo 
- ~ +  A ' ( u ( t ) )  i 6J*(t~) = J ( t ) Z o  

which have to be solved with the boundary conditions 

1 6Zo 1 6Z 0 ,= 
i ~ - )  ,=,0- i 6 J * ( t )  r = O, 

From (B4) and (B3) we obtain 

1 ~Zo f f  
i 6 J * ( t )  - - o dt' J ( t ' )  S(t ' ,  t ) .  Zo 

J * ( t ) Z o  (B3) 

(B4) 

z 0 [ 0 , 0 ]  = 1 (BS) 

(B6) 

- dt'  S ( t ,  t ' )  J * ( t ' )  + i dt'  J ( t ' )  O ( t ' ,  t )  �9 Z o (B7) 
i 6J( t )  Jto o 

with S(t ,  t ') and D(t ' ,  t) given by (17). From (B6) and (B7) one 
immediately obtains (17a). 
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